Diagenetic controls on the formation of the Anarraaq sediment-hosted Zn-Pb deposit, Red Dog district, Alaska, USA

Merilie Reynolds

The Anarraaq deposit is located approximately 10 km northwest of the Red Dog mine, one of the world’s largest producers of zinc. At Anarraaq, ore stage mineralization overprints siliceous, organic-rich mudstone which contains abundant pre-ore pyrite and barite layers and nodules. Based on textural observations and S and O isotopic data, we interpret the early pyrite and barite to have formed in shallow marine sediment in response to a localized flux of methane- and barium-bearing diagenetic fluid. Barite is almost ubiquitously replaced by quartz, sulfide, and lesser calcite and pyrobitumen. Textural evidence indicates that ore-stage sulfides crystalized in open space after near-complete barite dissolution. In the uppermost part of the deposit, sulfides preferentially replace barite over the surrounding intensely silicified mudstone.

The spatial coincidence between local accumulations of diagenetic barite ± pyrite and overprinting zinc mineralization at Anarraaq is also characteristic of the Red Dog Mine Area deposits. We propose that a localized flux of methane produced diagenetic conditions which resulted in the host rock being an effective trap for hydrothermal metals. Bacterial sulfate reduction (BSR) coupled to sulfate-driven anaerobic oxidation of methane (SD-AOM) can proceed at rates orders of magnitude higher than BSR alone. Furthermore, diagenetic barite formed just above the upward-migrating methane front would eventually dissolve in the advancing methane-rich pore waters. The resulting open space would significantly increase the porosity-permeability of the host mudstone. Although diagenetic carbonate is a common product of SD-AOM, there is no direct evidence for its presence in the Anarraaq sulfide deposit; this may be because it was completely replaced during ore-stage mineralization. Diagenesis of amorphous silica phases and/or remobilization of quartz may have created additional porosity at depth in the deposit and formed a siliceous cap that served to trap hydrothermal fluids within the diagenetic sediment.