The Keg deposit is a bulk tonnage Ag-Pb-Zn-Cu-Sn prospect situated to the north of the Anvil SEDEX Mining district, south central Yukon. The Keg deposit is the largest of around 25 known mineralized zones that comprise the Silver Range property. The deposit is located in the Selwyn Basin. Locally, a silicified band of alteration hosts the deposit in a deformed sequence of Mississippian Tay Formation limestones and Permian Mount Christie Formation cherts.

Petrography, on core samples from the Keg deposit, has defined two dominant styles of mineralization. An initial deep, pervasive, Ag-bearing skarn occurs in structurally and lithologically controlled lenses. A mineralization temperature of 280 ± 20 °C has been calculated from sulfur isotope fractionation between galena-sphalerite pairs and element partitioning in sphalerite-stannite pairs. The skarn ore has a δ^{34}S_{CDT} value of 0 ± 3 ‰ indicating an igneous source for the sulfur. Calcite in the skarn has a range of δ^{18}OSMOW values from 9 to 15 ‰ and δ^{13}C_{PDB} values from -4 to -8 ‰. Galena, from the skarn, has lead isotopic composition consistent with metal sourcing from the upper crust with a minor contribution from a lower crustal source.

The skarn ore is crosscut by fracture controlled epithermal mineralization. The epithermal ore has a δ^{34}S_{CDT} value of 0 ± 3 ‰. The Calcite in the epithermal veins has a range of δ^{18}OSMOW values from 2 to 6 ‰ and δ^{13}C_{PDB} values from -2 to -6 ‰.

The lead and sulfur isotopic compositions indicate, the Keg deposit formed due to mixing of a metal bearing upper crustal fluid, of sedimentary origin, and a sulfur bearing fluid of igneous origin. The transition from skarn to epithermal mineralization is likely temperature controlled and may result from regional tectonic unroofing.

The complex mineralization that forms the Silver Range deposit is unique to the Selwyn Basin; therefore, understanding the genesis of the deposit will aid regional exploration efforts.